MTC ElectroCeramics is part of Morgan Technical Ceramics
You are here: HomeResourcesPiezo Ceramic Tutorials › Typical Properties

Typical Properties

Equivalent DoD Navy Type I

Parameter Symbol Unit  
General Material Designations 4
  KT33   1115 - 1435
Dissipation Factor     0.004
  Qm   500 - 600
Density Morgan Electro Ceramics Tutorial kg/m3 7600
Curie Temperature   °C 320
       
Coupling
Coefficients
kp   0.580
k31   -0.340
       
Piezoelectric
Charge Constants
d33 x10-12C/N or m/V 290
d31 x10-12C/N or m/V -125
       
Piezoelectric
Voltage Constants
g33 x10-3Vm/N 24.6
g31 x10-3Vm/N -10.6
       
Frequency Constant Np Hz.m 2220
       
Elastic Constants Short Circuit SE11 SEx10-12m2/N 12.4
YE11 SEx10-12m2/N 8.1
       
Elastic Constants Open Circuit SD11 SDx10-12m2/N 11.0
YD11 SDx10-12m2/N 9.1
       
High Field Dielectric Properties (200kV/m) KT33 % <7.0
DF   <0.02
       
High Field Dielectric Properties (400kV/m) KT33 % <20.0
DF   <0.0
       
Volume Resistivity @ 25°C   ohm.m >1010
Volume Resistivity @ 100°C   ohm.m >108.5
Volume Resistivity @ 200°C   ohm.m >105.5
       
Time Constant @ 25°C   s >100
Time Constant @ 100°C   s >5
Time Constant @ 200°C   s >0.07
       
Aging Rates & Time Stability KT33  % / time decade -4.6
kp % / time decade -1.7
d33 % / time decade -3.4
Np   1.0
       
Temperature Stability   % change in KT33 from 0 - 50°C 8.0

Equivalent DoD Navy Type II

Parameter Symbol Unit  
General Material Designations 5
  KT33   1770
Dissipation Factor     0.02
  Qm   75
Density Morgan Electro Ceramics Tutorial kg/m3 7800
Curie Temperature   °C 365
       
Coupling Coefficients kp   0.600
k31   -0.343
       
Piezoelectric
Charge Constants
d33 x10-12C/N or m/V 400
d31 x10-12C/N or m/V -177
       
Piezoelectric
Voltage Constants
g33 x10-3Vm/N 25.2
g31 x10-3Vm/N -11.1
       
Frequency Constant Np Hz.m 1980
       
Elastic Constants Short Circuit SE11 SEx10-12m2/N 10.1
YE11 SEx10-12m2/N 6.2
       
Elastic Constants Open Circuit SD11 SDx10-12m2/N 14.2
YD11 SDx10-12m2/N 7.1
       
High Field Dielectric Properties (200kV/m) KT33 % 12.5
DF   0.0238
       
High Field Dielectric Properties (400kV/m) KT33 % 26.1
DF   0.0551
       
Volume Resistivity @ 25°C   ohm.m >1012
Volume Resistivity @ 100°C   ohm.m >1011
Volume Resistivity @ 200°C   ohm.m >1010
       
Time Constant @ 25°C   s  
Time Constant @ 100°C   s  
Time Constant @ 200°C   s  
       
Aging Rates & Time Stability KT33  % / time decade -1.0
kp % / time decade -1.7
d33 % / time decade -3.4
Np   0.2
       
Temperature Stability   % change in KT33 from 0 - 50°C 11.3

Equivalent DoD Navy Type III

Parameter Symbol Unit  
General Material Designations 8
  KT33   980 - 1180
Dissipation Factor     0.002
  Qm   900 - 1600
Density Morgan Electro Ceramics Tutorial kg/m3 >7500
Curie Temperature   °C >300
       
Coupling
Coefficients
kp   >0.520
k31   -0.350
       
Piezoelectric
Charge Constants
d33 x10-12C/N or m/V 300
d31 x10-12C/N or m/V -127
       
Piezoelectric
Voltage Constants
g33 x10-3Vm/N 28.8
g31 x10-3Vm/N -12.2
       
Frequency Constant Np Hz.m 2170
       
Elastic Constants Short Circuit SE11 SEx10-12m2/N 12.8
YE11 SEx10-12m2/N 7.8
       
Elastic Constants Open Circuit SD11 SDx10-12m2/N 11.3
YD11 SDx10-12m2/N 8.9
       
High Field Dielectric Properties (200kV/m) KT33 % 1.9
DF    
       
High Field Dielectric Properties (400kV/m) KT33 %  
DF    
       
Volume Resistivity @ 25°C   ohm.m >1012
Volume Resistivity @ 100°C   ohm.m >108
Volume Resistivity @ 200°C   ohm.m >106
       
Time Constant @ 25°C   s >100
Time Constant @ 100°C   s >2
Time Constant @ 200°C   s >0.01
       
Aging Rates & Time Stability KT33  % / time decade -4.0
kp % / time decade -2.1
d33 % / time decade -6.3
Np   1.0
       
Temperature Stability   % change in KT33 from 0 - 50°C 10.4

Equivalent DoD Navy Type V

Parameter Symbol Unit  
General Material Designations 5J
  KT33   2650
Dissipation Factor     0.020
  Qm   71
Density Morgan Electro Ceramics Tutorial kg/m3 >7600
Curie Temperature   °C >250
       
Coupling
Coefficients
kp   0.635
k31   -0.375
       
Piezoelectric
Charge Constants
d33 x10-12C/N or m/V 530
d31 x10-12C/N or m/V -230
       
Piezoelectric
Voltage Constants
g33 x10-3Vm/N 22.6
g31 x10-3Vm/N -9.8
       
Frequency Constant Np Hz.m 1965
       
Elastic Constants Short Circuit SE11 SEx10-12m2/N 16.0
YE11 SEx10-12m2/N 6.2
       
Elastic Constants Open Circuit SD11 SDx10-12m2/N 13.8
YD11 SDx10-12m2/N 7.3
       
High Field Dielectric Properties (200kV/m) KT33 %  
DF    
       
High Field Dielectric Properties (400kV/m) KT33 %  
DF    
       
Volume Resistivity @ 25°C   ohm.m  
Volume Resistivity @ 100°C   ohm.m  
Volume Resistivity @ 200°C   ohm.m  
       
Time Constant @ 25°C   s  
Time Constant @ 100°C   s  
Time Constant @ 200°C   s  
       
Aging Rates & Time Stability KT33  % / time decade -1.1
kp % / time decade -0.3
d33 % / time decade -4.0
Np   0.2
       
Temperature Stability   % change in KT33 from 0 - 50°C 24.1

Equivalent DoD Navy Type VI

Parameter Symbol Unit  
General Material Designations 5H
  KT33   3300
Dissipation Factor     0.021
  Qm   67
Density Morgan Electro Ceramics Tutorial kg/m3 7500
Curie Temperature   °C 195
       
Coupling
Coefficients
kp   0.635
k31   -0.375
       
Piezoelectric
Charge Constants
d33 x10-12C/N or m/V 618
d31 x10-12C/N or m/V -264
       
Piezoelectric
Voltage Constants
g33 x10-3Vm/N 21.2
g31 x10-3Vm/N -8.9
       
Frequency Constant Np Hz.m 1963
       
Elastic Constants Short Circuit SE11 SEx10-12m2/N 16.9
YE11 SEx10-12m2/N 5.9
       
Elastic Constants Open Circuit SD11 SDx10-12m2/N 14.5
YD11 SDx10-12m2/N 6.9
       
High Field Dielectric Properties (200kV/m) KT33 %  
DF    
       
High Field Dielectric Properties (400kV/m) KT33 %  
DF    
       
Volume Resistivity @ 25°C   ohm.m >1011
Volume Resistivity @ 100°C   ohm.m >1011
Volume Resistivity @ 200°C   ohm.m >1010
       
Time Constant @ 25°C   s >2000
Time Constant @ 100°C   s >2000
Time Constant @ 200°C   s >1000
       
Aging Rates & Time Stability KT33  % / time decade -0.6
kp % / time decade -0.2
d33 % / time decade -3.9
Np   0.3
       
Temperature Stability   % change in KT33 from 0 - 50°C 30.7

Custom Materials

Parameter Symbol Unit PZT 5B PZT 5R PZT 5M PZT 5K PZT 7A PZT 7D PT2 / PC6
General Material Designations 5B 5R 5M 5K 7A 7D PT
  KT33   2350 2000 4015 5500 410 1300 218
Dissipation Factor     0.020 0.020 0.028 0.023 0.025 0.005 0.022
  Qm   80 80 45 61 580 600 1150
Density Morgan Electro Ceramics Tutorial kg/m3 7900 7900 7700 7900 7900 7800 6900
Curie Temperature   °C 330 350 150 160 350 325 238
                   
Coupling
Coefficients
kp   0.640 0.630 0.630 0.650 0.510 0.510 k t=0.510
k31   -0.380 -0.385 -0.370 -0.380 -0.300 -0.300 -0.030
                   
Piezoelectric
Charge Constants
d33 x10-12C/N or m/V 530 480 650 775 154 240 67
d31 x10-12C/N or m/V -210 -200 -270 -323 -60 -112 -3
                   
Piezoelectric
Voltage Constants
g33 x10-3Vm/N 25.5 27.1 20.0 18.6 41.3 21.0 34.8
g31 x10-3Vm/N -10.1 -11.5 -7.6 -6.9 -16.2 -9.6 -2.1
                   
Frequency Constant Np Hz.m 2015 1950 2025 1945 2380 2265 2856
                   
Elastic Constants
Short Circuit
SE11 SEx10-12m2/N 14.7 15.7 15.0 16.0 10.6 11.8 7.5
YE11 SEx10-12m2/N 6.8 6.4 6.7 6.3 9.4 8.5 13.4
                   
Elastic Constants
Open Circuit
SD11 SDx10-12m2/N 12.6 13.3 12.9 13.8 9.7 10.7 7.4
YD11 SDx10-12m2/N 7.9 7.5 7.8 7.3 10.4 9.4 13.5
                   
High Field Dielectric
Properties (200kV/m)
KT33 %             -0.9
DF               0.016
                   
High Field Dielectric
Properties (400kV/m)
KT33 %             -1.0
DF               0.016
                   
Volume Resistivity @ 25°C   ohm.m >1011       >109   >1010
Volume Resistivity @ 100°C   ohm.m >1011       >108    
Volume Resistivity @ 200°C   ohm.m >1010       >106.5    
                   
Time Constant @ 25°C   s >2000       >10    
Time Constant @ 100°C   s >1800       >0.5    
Time Constant @ 200°C   s >250       >0.03    
                   
Aging Rates &
Time Stability
KT33  % / time decade -0.3 -3.6     0.06 0.03 -2.3
kp % / time decade 0.0 0.0     0.0 0.006 k t=1.7
d33 % / time decade -3.0 -3.1     0.0 0.0  
Np   0.1 0.2     -0.05 0.02 0.2
                   
Temperature Stability   % change in KT33 from 0 - 50°C 15.6 16.3     18.1 11.3  

Back to top...

 

Typical Thermal Effects

Pyroelectric effects, in 10-6 coul/cm2 (10-2coul/m2°C)

Temp °C PZT4D PZT5A PZT5A
  1st Heating First Heating Subsequent
Heatings
-196 - -0.02 -0.02
-80 -0.025 -0.03 -0.02
-60 -0.025 -0.03 -0.02
0 -0.025 -0.04 -0.02
30 -0.028 -0.06 -0.02
60 -0.026 -0.07 -0.02
80 -0.025 -0.09 -0.02
100 (a) -0.11 -0.02
200 (a) -0.17 -0.04
300 (a) -0.23 -0.09

(a) Above about 80°C the pyroelectric effect is masked by anomalous dielectric charges.

Thermal Expansion Coefficient ( in 10-6 /°C)

Poled PZT5A

  1st Heating 1st Heating Subsequent
Heatings
Subsequent
Heatings
°C Morgan Electro Ceramics Tutorial1 Morgan Electro Ceramics Tutorial3 Morgan Electro Ceramics Tutorial1 Morgan Electro Ceramics Tutorial3
0 +1.5 +2 +1 +4
50 +1.5 +2 +1.4 +4
100 +6 -6 +2 +3
150 +6 -7 +2.7 +1
200 +5 -7 +3.3 -1.6
250 +4.2 -6 +3.9

-4.2

Poled PZT4D

  1st Heating 1st Heating Subsequent
Heatings
Subsequent
Heatings
°C Morgan Electro Ceramics Tutorial1 Morgan Electro Ceramics Tutorial3 Morgan Electro Ceramics Tutorial1 Morgan Electro Ceramics Tutorial3
0 +1.5 +0.1 +3.8 +1.7
50 +4.5 -0.1 +3.8 +1.7
100 +5.8 -6 +3.8 -1
150 +6.4 -6 +3.8 -1.4
200 +5.4 -6.1 +3.4 -2.4
250        

Virgin Unpoled

  PZT5A PZT4D
°C Morgan Electro Ceramics Tutorial Morgan Electro Ceramics Tutorial
0 +2.5 +2.0
50 +2.1 +1.8
100 +2.0 +1.5
150 +1.8 +1.1
200 +1.5 +1.0
250 +1.0 +0.3
300 +0.7 0.0
350 -3.0 +6.2
400 +5.0 +7.8
500 +8.2 +8.2

As noted above, thermal expansion of PZT4D and PZT5A is extremely anisotropic only on first heating, and on first heating only above about 50°C

Heat Capacity

PZT, approx 420 joules/kg°C (138 joules°C mole)

Thermal Conductivity

PZT, approx 1.8W/m°C

Typical Responses

g31 vs Temperature
Morgan Electro Ceramics Tutorial

 d31 Vs Temperature
Morgan Electro Ceramics Tutorial

Relative Dielectric Constant Vs Temperature
Morgan Electro Ceramics Tutorial

Mechanical Q Vs Temperature
Morgan Electro Ceramics Tutorial

 Planar Coupling Factor Vs Temperature
Morgan Electro Ceramics Tutorial

Frequency Constant Vs Temperature
Morgan Electro Ceramics Tutorial

Back to top...

Typical High Signal Properties

    PZT4D PZT5A PZT8
AC depoling Field   >1.0 0.7 >1.5
AC field for tanMorgan Electro Ceramics Tutorial=0.04, 25°C (a)   0.39 0.45 >1.0
% increase of Morgan Electro Ceramics TutorialT33 at above electric field   17 11 10
AC field for tanMorgan Electro Ceramics Tutorial=0.04, 100°C   0.33 0.045 n/a

       
Max rated static compressive stress (maintained) PARALLEL to polar axis 25°C 82.7 20.7 or 34.5(c) 82.7
100°C 41.4 20.7 41.4
% change of Morgan Electro Ceramics TutorialT33 with stress increase to rated max compressive stress at 25°C (b)   +25% approx (d) -3% approx (d) +18% approx (d)
% change of d33 with stress increase to rated max compressive stress at 25°C (b)   ±15% approx (d) 0% at 20.7
-13% at 34.5 approx
+6% (d)

       
Max rated compressive stress (cycled) PARALLEL to polar axis 25°C 82.7 20.7 82.7
100°C 41.4 20.7 41.4
Max rated static compressive stress (maintained) PERPENDICULAR to polar axis 25°C 55.2 13.8 55.2
100°C 27.6 13.8 27.6
% change of Morgan Electro Ceramics TutorialT33 with stress increase to rated max compressive stress at 25°C (b)   +10% approx - -2%
% change of d31 with stress increase to rated max compressive stress at 25°C (b)   -10% approx (f) - -10%

       
Maximum rated hydrostatic pressure   345 138 345
Compressive Strength   >517 >517 >517
Tensile Strength, Static (g)   75.8 75.8 75.8
Tensile Strength, Dynamic (peak) (g)   24.1 27.6 34.5
         
Mechanical Q at 0MPa   600 75 1000
Mechanical Q at 7MPa   180 approx 25 approx 800
Mechanical Q at 14MPa   110 approx 25 approx 500
% increase in sE11 at 7MPa   1.7 approx 10.5 approx 0.1
% increase in sE11 at 14MPa   3.7 approx 17 approx 0.2

Notes
(a) The value of tanMorgan Electro Ceramics Tutorial at a given electric field is a function of time after poling or after any major disturbance such as exposure to an elevated temperature.
(b) After appropriate stabilizing treatment. This consists of a temperature stabilization plus a few minutes soak at the appropriate static stress. The temperature stabilization is, however, more important than the stress soak.
(c) The higher figure applies to a receiver, the lower to a radiator. The recommended use of PZT-5A or PZT-5H is the former.
(d) In range to 70 MPa.
(e) In range to 35 MPa.
(f) The lateral d-constant perpendicular to the stress and polar axis is up about 20%.
(g) These figures are dependent upon configuration and perfection of fabrication. The static tensile strength figures were obtained from bending tests on thin "Bimorph" structures,while the dynamic tensile strength figures were obtained from measurements of high amplitude resonant vibration of rings The latter tests are more sensitive to minor flaws.
 

Back to top...

Ageing Rates and Time Stability

Most of the properties of piezoelectric ceramics change gradually with time. The changes tend to be logarithmic with time after poling. The ageing rate of various properties depends on the ceramic composition and on the way the ceramic is processed during manufacture. Because of ageing, exact values of various properties such as dielectric constant, coupling, and piezoelectric constants may only be specified for a standard time after poling. The longer the time period after poling, the more stable the material becomes. The ageing process in any ceramic can be accelerated by exposing the ceramic to one or more of the following conditions.
(l ) high mechanical stress
(2) strong electric depoling field
(3) high temperature approaching the Curie point

Material selection should be based on the conditions of a given application. Some typical ageing rates of various material properties are given in the following table

Time Stability (percent change per time decade) for some common materials

Property
Material
  PZT4D PZT8 PZT5A PZT5J PZT5H PZT7A
KT33 -4.6 -4.0 -0.9 -1.1 -0.6 +0.06
kp -2.0 -1.5 -0.1 -0.3 -0.2 0.0
d33 -3.4 -6.3 -2.9 -4.0 -3.9 0.0
Np +1.2 +0.9 +0.1 +0.2 +0.3 -0.05

Temperature Stability
The performance characteristics of the electric and piezo electric properties are affected by temperature variations. Each piezoelectric material is affected differently by temperature changes, according to the method of manufacture and chemical composition of the material. The changes in the various material properties with temperature are shown in the following table for all PZT materials.

Temperature Stability of KT33

Material %KT33 (%change from 0 - 50°C)
PZT-4D 8.8
PZT8 10.4
PZT5A 11.3
PZT5J 24.1
PZT5H 30.7
PZT7A 18.1
Contact Morgan Electro Ceramics
 

The Morgan Crucible Company plc is registered in England
Registered office at Quadrant, 55-57 High Street, Windsor, Berkshire, SL4 1LP. Company number: 286773.